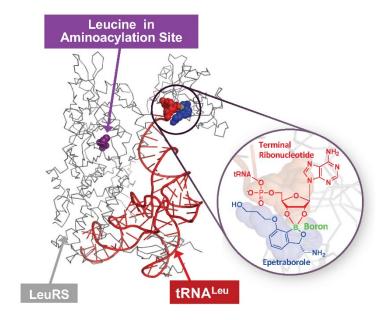
Epetraborole:

A Novel Antibiotic for NTM Lung Disease & Melioidosis

Paul Eckburg, MD

Chief Medical Officer AN2 Therapeutics, Inc. Menlo Park, CA

IDWeek, October 12, 2023

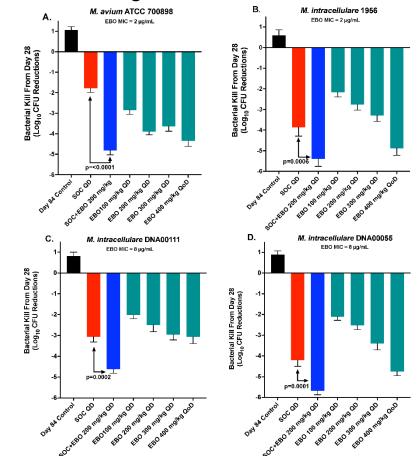

AN2Therapeutics

A new approach to global health

www.an2therapeutics.com

Epetraborole *Overview*

- Novel mechanism of action (MOA)¹
- In vitro activity against nontuberculous mycobacteria (NTM) and Burkholderia pseudomallei
- Oral formulation in late-stage development for NTM lung disease
 - QIDP, Fast Track, and Orphan Drug designations granted in U.S.
 - Superior microbiological efficacy when combined with SOC compared to SOC alone in preclinical NTM animal models ²
 - Multiple Phase 1 studies support well-tolerated dose (500 mg QD) with high probability of target attainment for *Mycobacterium avium* complex (MAC) ^{3,4}
 - Phase 2/3 pivotal trial in treatment-refractory MAC lung disease currently enrolling (ClinicalTrials.gov NCT05327803)
 - Nonclinical development underway to support clinical development for *M. abscessus* lung disease
- IV formulation in early-stage development for melioidosis
 - Awarded NIAID contract in 2022 to support pre-Phase 3 studies
 - Observational study in Thailand & Laos currently enrolling


MOA: Epetraborole inhibits leucyl-tRNA synthetase (LeuRS) by binding to the terminal adenosine ribose of tRNA^{Leu} in the editing site, blocking protein synthesis.¹

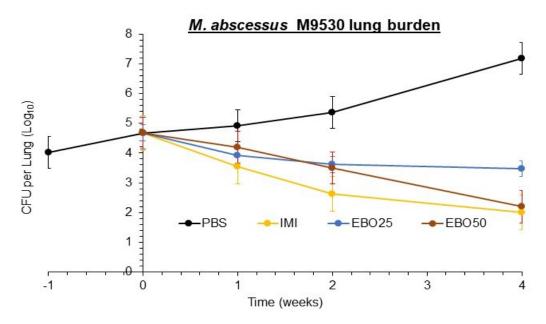
• 110 respiratory MAC isolates from Japan

- MIC range 0.25–16 μ g/ml; MIC₉₀ = 4 μ g/ml
- Macrolide resistance did not impact EBO activity
- MIC distributions similar to those associated with isolates collected from the U.S.¹
- See Poster #2135 (Sat, Oct 14, 12:15-1:30PM)

	<u>MIC (μg/mL)</u>		
Antimicrobial	MIC Range	MIC ₅₀	MIC ₉₀
Epetraborole	0.25 – 16	2	4
Clarithromycin	0.125 – >32	1	4
Amikacin	2 – 32	8	16
Ethambutol	2 – >32	4	16
Rifabutin	≤0.03 – 2	0.06	0.25

Superior CFU reductions with EBO + SOC vs. SOC alone with 4 MAC isolates in a chronic mouse model of MAC lung disease ²

AN2Therapeutics


CFU = Colony-forming units; MAC = *Mycobacterium avium* complex; MIC = Minimum inhibitory concentration; SOC = Standard-of-care (clarithromycin, ethambutol, and rifabutin). ¹ DeStefano, MS, et al. IDWeek 2022 Poster. ² De K, et al. IDWeek 2022 Poster.

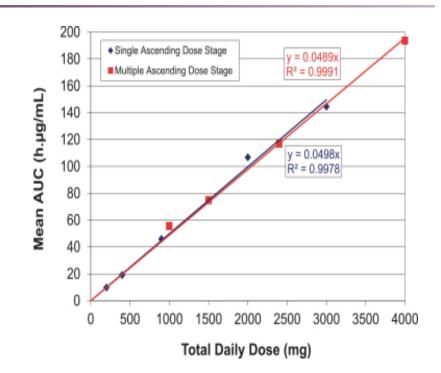
Epetraborole Potent In Vitro & In Vivo Activity vs. M. abscessus (Mab)

- 147 respiratory Mab isolates from U.S. & Europe
 - MIC range 0.03–0.25 μg/ml; MIC₉₀ = 0.12 μg/ml
 - Macrolide resistance, amikacin resistance, and morphology did not impact EBO activity
 - See Oral #2064 (Sat, Oct 14, 10:54-11:06 AM)

	<u>ΜIC (μg/mL)</u>		
Antimicrobial	MIC range	MIC ₅₀	MIC ₉₀
Epetraborole	0.03 - 0.25	0.06	0.125
Clarithromycin	≤0.25 - >32	>32	>32
Amikacin	4 - 64	16	64
Imipenem	≤1 - >32	8	32
Linezolid	≤0.5 - >16	16	>16
Moxifloxacin	≤0.5 - >4	4	>4
Cefoxitin	4 -128	32	64
Doxycycline	0.25 - >4	>4	>4
Tobramycin	4 - >8	>8	>8
Clofazimine	≤0.25 - 1	0.5	1
Minocycline	≤0.125 - >8	>8	>8
Tigecycline	0.25 -1	0.25	1
Rifabutin	0.5 - >4	>4	>4
Ethambutol	8 - >32	>32	>32

 Similar CFU reductions vs. imipenem in a chronic model of Mab lung disease (immunocompromised C3HeB/FeJ mice)

Unpublished data from Gyanu Lamichhane's Lab at Johns Hopkins University. PBS = Phosphate-buffered saline (negative control); IMI = Imipenem 100 mg/kg SC BID; EBO25 = Epetraborole 25 mg/kg PO QD; EBO50 = Epetraborole 50 mg/kg PO QD.


Epetraborole PK & Tolerability Data Available Across Wide Dose Range (250–6,000 mg Daily)

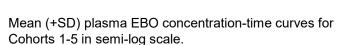
Anacor/GSK: 6 "Legacy" Phase 1 studies	Phase 1 Study	EBO Subjects (n)
 4 IV studies and 2 oral studies conducted in 2010-2011 	IV Formulation	
 High EBO doses studied, up to 6000 mg daily 	SAD/MAD	SAD: 30 MAD: 24
AN2: 4 Phase 1 studies (oral formulation)	Intrapulmonary PK ¹	Single dose: 15 q12h x 3 days: 15
 EBO-101: Dose-ranging safety, PK & food effect of oral EBO 	SAD/MAD in Japan*	8
250–1000 mg daily up to 28 days; completed ²	Mass balance	6
 EBO-102: Renal impairment; completed 	Total IV	98
 See Poster #2144 (Sat, Oct 14, 12:15-1:30PM) 	Oral Formulation	
• EBO-103: Ethnobridging study in Japan; completed	SAD/MAD	SAD: 19 MAD: 41
 See Poster #2556 (Sat, Oct 14, 12:15-1:30PM) 	Food effect*	24
 EBO-104: Thorough QT; enrollment completed 	EBO-101: Dose-ranging x 28 days	39
ClinicalTrials.gov NCT05995444	EBO-102: Renal impairment	40
	EBO-103: Ethnobridging	18
Oral EBO dosage for NTM lung disease is 500 mg QD	EBO-104: Thorough QT	24
	Total Oral	205
	TOTAL IV + Oral	303

*Phase 1 studies terminated early due to discontinued Phase 2 cUTI program.

Epetraborole *PK Characteristics*

- 0% protein binding
- Metabolized to metabolite M3 by alcohol dehydrogenase (ADH)
- 90% of dose (parent + M3) recovered in urine and ~8 % in feces
- Low systemic clearance (22–24 L/h), indicating little first pass metabolism
- Extensive tissue distribution; volume of distribution 445 ±91 L for 500 mg QD
- Linear kinetics observed following IV or oral doses of 250–4000 mg (Figure)
- T¹/₂ ~ 6–11 h
- Repeat dosing accumulation ratio for AUC is 0.99–1.24, deemed not clinically meaningful
- Mild food effect
 - T_{max} increased, C_{max} decreased, and minor change in AUC

Correlation of mean EBO AUC to total daily IV EBO dose for SAD & MAD cohorts reveals a linear dose response.


EBO-102 | Phase 1 Renal Impairment Study IDWeek 2023 Poster #2144

- **Objectives**: PK and safety of EBO in subjects with various degrees of renal impairment
- **Design**: Phase 1, multicenter, open-label, study; 5 dose cohorts, 8 subjects each, single-dose 500 mg QD

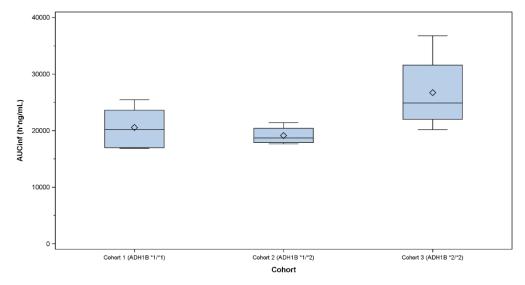
Cohorts:

Cohort	Renal Impairment	N
1	Normal renal function (eGFR ≥ 90)	8
2	Mild (eGFR \geq 60 and <90)	8
3	Moderate (eGFR ≥ 30 and <60)	8
4	Severe (eGFR <30)	8
5	ESRD on hemodialysis	8

Results:

- EBO was well-tolerated
- Subjects with renal impairment (Cohorts 2–5) did not exhibit quantitatively distinct EBO PK profiles
- Increases in exposure of the inactive metabolite M3 were observed in subjects with severe renal impairment or ESRD on hemodialysis
- Supports enrollment of patients with mild to moderate renal impairment in ongoing clinical trials

EBO-103 | Phase 1 Ethnobridging Study in Japan IDWeek 2023 Poster #2556


- Objectives:
 - Assess the PK of EBO in Japanese subjects with various ADH1B genotypes
 - Assess EBO safety and tolerability
- **Design**: Phase 1, open-label, 3 dose cohorts, 6 subjects each, single-dose 500 mg

Cohorts:

Cohort	ADH Genotype	Prevalence in Japan ¹	N
1	ADH1B *1/*1 (normal EtOH metabolism)	5%	6
2	ADH1B *1/*2 (moderately increased EtOH metabolism)	35%	6
3	ADH1B *2/*2 (fast EtOH metabolism)	60%	6

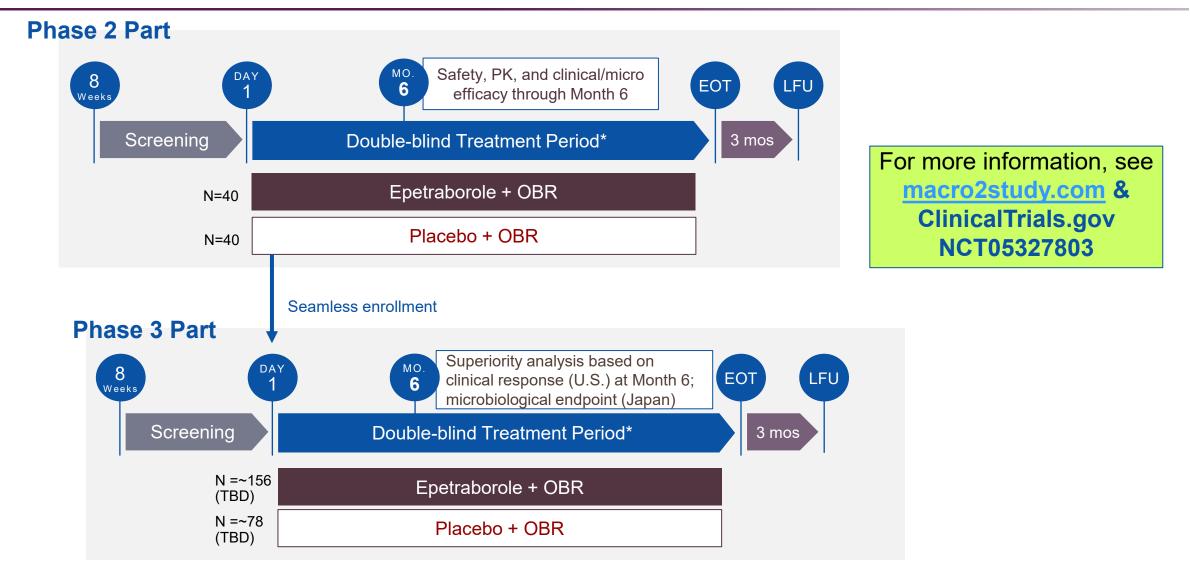
Results:

- EBO was well tolerated (no TEAEs)
- EBO exposure in ADH1B*2/*2 subjects was ~1.2-1.4-folder higher than in ADH1B *1/*1 subjects
- No underdosing of EBO predicted in patients with ADH1B *1/*2 or *2/*2 genotypes, including Japanese patients

Box plots of EBO exposures (AUC $_{0-inf}$ in h*ng/mL) by cohort.

Epetraborole

Well-tolerated Across 250–1000 mg QD x 28 Days


EBO-101 Phase 1 Dose-Ranging Study (QD x 28 days): Incidence of TEAEs occurring in ≥10% of subjects in oral EBO group (Safety Population).¹

	Number (%) of Subjects/ [Number of Events]	
	Pooled	Pooled
	Epetraborole	Placebo
	(N=39)	(N=12)
	n (%)	n (%)
At least 1 TEAE	30 (76.9) [153]	10 (83.3) [50]
Drug-related TEAE	11 (28.2) [52]	5 (41.7) [13]
Serious TEAE	0	0
Severe TEAE	0	0
TEAE leading to treatment discontinuation	3 (7.7)[6]	0
TEAE leading to study withdrawal	1 (2.6) [1]	0
TEAEs Occurring in ≥10% of subjects*		
Nausea	9 (23.1) [9]	2 (16.7) [2]
Vascular access site pain	9 (23.1) [11]	3 (25.0) [3]
Headache	7 (17.9) [12]	3 (25.0) [3]
Vessel puncture site bruise	6 (15.4) [8]	2 (16.7) [5]
Back pain	5 (12.8) [5]	0
Decreased appetite	4 (10.3) [4]	0
Diarrhea	4 (10.3) [6]	1 (8.3) [1]
Upper respiratory tract infection	4 (10.3) [4]	1 (8.3) [1]

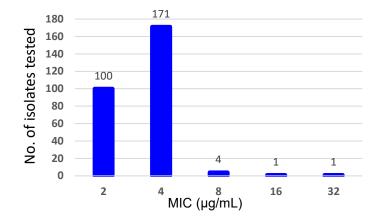
- 92% TEAEs mild, most commonly mild GI events
 - 41.0% EBO vs. 41.7% placebo
 - No cases of C. difficile
- EBO 500 mg QD (dosage under study in MAC lung disease) was well tolerated in healthy volunteers
- Current Phase 2 assessing safety beyond 28 days (up to 16 months duration; next slide)

*One TEAE of anemia (predefined TEAE of special interest) occurred in a single EBO 1000 mg PO QD subject.

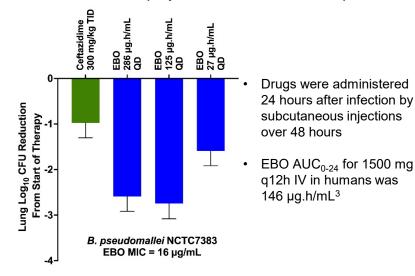
EBO-301 (MACrO₂) | Phase 2/3 Trial in Treatment-refractory MAC Lung Disease *Phase 2 Enrolled; Currently Enrolling in Phase 3 Part*

AN2Therapeutics

* Patients who culture convert will be treated for 12 months from 1st negative culture per treatment guidelines. EOT = End-of-Therapy; LFU = Late Follow-up; OBR = Optimized Background Regimen, consisting of at least 2 antimycobacterial agents; TBD = Final Phase 3 sample size to be determined based on Phase 2 data.


AN2's Global Health Commitment

Epetraborole is a Promising Agent vs. Melioidosis


Developing IV EBO for intensive phase therapy

- ~165,000 cases and 89,000 deaths per year worldwide, with >50% all-cause mortality ¹
- One of deadliest neglected tropical diseases, with global burden of 4.6 million disability-adjusted life years ²
- Endemic in Southeast Asia, India & Northern Australia
- Initial focus on hospitalized patients with acute systemic disease, in combination with SOC (e.g., ceftazidime)
- Phase 3-enabling nonclinical and clinical studies funded by NIAID (up to \$17.8M contract)
- Partnering with world melioidosis experts at MORU
 - Multicenter, prospective, observational study underway to characterize Thai & Lao patients with suspected melioidosis and assess potential clinical endpoints for Phase 3

Acute pulmonary infection model of melioidosis in BALB/c mice (unpublished data from CSU)

AN2Therapeutics CSU = Slayden Lab at Colorado State University; EBO = Epetraborole; MIC = Minimum inhibitory concentration; MORU = Mahidol-Oxford Research Unit. ¹ Limmathurotsakul D, et al. *Nat Microbiol* 2016;1:1. ² Birnie E, et al. *Lancet Infect Dis* 2019;19:892-902. ³ Tenero D, et al. *AAC* 2013;57:3334-3339.

Acknowledgements

- All patients and volunteers who enrolled in our studies
- Collaborators:
 - Our NTM expert advisors
 - Evidera
 - NTM Info & Research
 - COPD Foundation
 - Colorado State University
 - National Jewish Health
 - Syracuse University
 - Johns Hopkins University
 - Veterans Health Research Institute of Central New York
 - Institute for Clinical Pharmacodynamics
 - Praedicare
 - Royal Adelaide Hospital (Australia)
 - Brii Biosciences (China)
 - MORU Tropical Health Network (Thailand)
 - NIAID

Our clinical trial investigators & study teams

• AN2 Clinical/Nonclinical Teams:

- Dickon Alley
- Bibiana Castañeda-Ruiz
- Sanjay Chanda
- Julia Chou
- Dave Clarke
- Lynn Connolly
- Eric Easom
- Larry Friedrich
- Mark Gotfried
- Vince Hernandez
- Jenn Huber
- Linda Kammerer
- Tiffany Keepers White
- Gabrielle Khedr

- Kevin Krause
- Jennifer Long
- Stephanie Moore
- Kevin O'Shea
- Steve Prior
- Lisa Reiche
- Julie Rosenberg
- Afshin Shafiee
- Jaymin Shah
- Alex Smith
- Kate Stuart
- Rianna Stefanakis
- Tyler Westcott
- Scott Yeats
- **Thank You!**